Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
medRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562733

RESUMO

Hyperpolarization activated Cyclic Nucleotide (HCN) gated channels are crucial for various neurophysiological functions, including learning and sensory functions, and their dysfunction are responsible for brain disorders, such as epilepsy. To date, HCN2 variants have only been associated with mild epilepsy and recently, one monoallelic missense variant has been linked to developmental and epileptic encephalopathy. Here, we expand the phenotypic spectrum of HCN2- related disorders by describing twenty-one additional individuals from fifteen unrelated families carrying HCN2 variants. Seventeen individuals had developmental delay/intellectual disability (DD/ID), two had borderline DD/ID, and one had borderline DD. Ten individuals had epilepsy with DD/ID, with median age of onset of 10 months, and one had epilepsy with normal development. Molecular diagnosis identified thirteen different pathogenic HCN2 variants, including eleven missense variants affecting highly conserved amino acids, one frameshift variant, and one in-frame deletion. Seven variants were monoallelic of which five occurred de novo, one was not maternally inherited, one was inherited from a father with mild learning disabilities, and one was of unknown inheritance. The remaining six variants were biallelic, with four homozygous and two compound heterozygous variants. Functional studies using two-electrode voltage-clamp recordings in Xenopus laevis oocytes were performed on three monoallelic variants, p.(Arg324His), p.(Ala363Val), and p.(Met374Leu), and three biallelic variants, p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp). The p.(Arg324His) variant induced a strong increase of HCN2 conductance, while p.(Ala363Val) and p.(Met374Leu) displayed dominant negative effects, leading to a partial loss of HCN2 channel function. By confocal imaging, we found that the p.(Leu377His), p.(Pro493Leu) and p.(Gly587Asp) pathogenic variants impaired membrane trafficking, resulting in a complete loss of HCN2 elicited currents in Xenopus oocytes. Structural 3D-analysis in depolarized and hyperpolarized states of HCN2 channels, revealed that the pathogenic variants p.(His205Gln), p.(Ser409Leu), p.(Arg324Cys), p.(Asn369Ser) and p.(Gly460Asp) modify molecular interactions altering HCN2 function. Taken together, our data broadens the clinical spectrum associated with HCN2 variants, and disclose that HCN2 is involved in developmental encephalopathy with or without epilepsy.

2.
Am J Med Genet A ; : e63531, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421086

RESUMO

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.

3.
Genet Med ; 26(5): 101082, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38281098

RESUMO

PURPOSE: To assess the likely pathogenic/pathogenic (LP/P) variants rates in Mendelian dementia genes and the moderate-to-strong risk factors rates in patients with Alzheimer disease (AD). METHODS: We included 700 patients in a prospective study and performed exome sequencing. A panel of 28 Mendelian and 6 risk-factor genes was interpreted and returned to patients. We built a framework for risk variant interpretation and risk gradation and assessed the detection rates among early-onset AD (EOAD, age of onset (AOO) ≤65 years, n = 608) depending on AOO and pedigree structure and late-onset AD (66 < AOO < 75, n = 92). RESULTS: Twenty-one patients carried a LP/P variant in a Mendelian gene (all with EOAD, 3.4%), 20 of 21 affected APP, PSEN1, or PSEN2. LP/P variant detection rates in EOAD ranged from 1.7% to 11.6% based on AOO and pedigree structure. Risk factors were found in 69.5% of the remaining 679 patients, including 83 (12.2%) being heterozygotes for rare risk variants, in decreasing order of frequency, in TREM2, ABCA7, ATP8B4, SORL1, and ABCA1, including 5 heterozygotes for multiple rare risk variants, suggesting non-monogenic inheritance, even in some autosomal-dominant-like pedigrees. CONCLUSION: We suggest that genetic screening should be proposed to all EOAD patients and should no longer be prioritized based on pedigree structure.

4.
Eur J Hum Genet ; 32(2): 190-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37872275

RESUMO

Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures.


Assuntos
Transtornos do Neurodesenvolvimento , Patologia Molecular , Humanos , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Metilação de DNA , Biomarcadores
5.
Front Oncol ; 13: 1120829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923434

RESUMO

Background: Predisposition to myeloid malignancies is a field at the border of hematology and genetics. Knowledge in this domain has so rapidly increased that WHO defined in 2016 the new "Myeloid Neoplasms with Germline Predisposition" category of tumors. High throughput sequencing is frequently performed in tumors either for diagnosis or prognosis, but this approach may identify potential germline variants that have to be confirmed on non-infiltrated tissues. Method: In this study, we systematically compared NGS data from genetic analysis performed on all sample types (bone marrow, blood, saliva, skin fibroblasts and hair follicles) in 29 patients, and 44 of their relatives (blood and saliva). Results: We showed that saliva was usable for relatives, but only for 24% (7/29) of our patients. Most of patients' saliva were either "non-contributive" (14/29 i.e., 48% because clearly or probably infiltrated) or "inconclusive" (8/29 corresponding to 28%). Conclusion: The recommendations for the use of saliva we present here focus on the importance of collecting saliva during remission when possible. Moreover, we propose hair follicles as an alternative to skin biopsy, that remains the gold standard especially in case of allogenic hematopoietic stem cells transplantation. Technological progresses have revolutionized the diagnosis of predisposition to solid or hematological malignancies, and it is very likely that new techniques will help to manage the familial predisposition in the future.

6.
Mol Genet Metab ; 138(2): 106983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709536

RESUMO

GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of GM2 ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal ß-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of ß-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP. We developed a rapid, specific and sensitive liquid chromatography-mass spectrometry-based method to measure simultaneously GM1, GM2, GM3 and GD3 molecular species. Gangliosides were analysed in plasma from 19 patients with GM2-Gangliosidosis: Tay-Sachs (n = 9), Sandhoff (n = 9) and AB variant of GM2-Gangliosidosis (n = 1) and compared to 20 age-matched controls. Among patients, 12 have a late adult-juvenile-onset and 7 have an infantile early-onset of the disease. Plasma GM2 molecular species were increased in all GM2-Gangliosidosis patients (19/19), including the patient with GM2A mutation, compared to control individuals and compared to patients with different other lysosomal storage diseases. GM234:1 and GM234:1/GM334:1 ratio discriminated patients from controls with 100% sensitivity and specificity. GM234:1 and GM234:1/GM334:1 were higher in patients with early-onset compared to those with late-onset of the disease, suggesting a relationship with severity. Longitudinal analysis in one adult with Tay-Sachs disease over 9 years showed a positive correlation of GM234:1 and GM234:1/GM334:1 ratio with age at sampling. We propose that plasma GM2 34:1 and its ratio to GM3 34:1 could be sensitive and specific biochemical diagnostic biomarkers for GM2-Gangliosidosis including AB variant and could be useful as a first line diagnostic test and potential biomarkers for monitoring upcoming therapeutic efficacy.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Doença de Tay-Sachs , Adulto , Humanos , Gangliosídeos/metabolismo , Gangliosídeo G(M2)/metabolismo , Gangliosidoses GM2/diagnóstico , Gangliosidoses GM2/genética , Doença de Tay-Sachs/diagnóstico , Doença de Tay-Sachs/genética , Hexosaminidase A , Biomarcadores , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Doença de Sandhoff/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
7.
Eur J Endocrinol ; 187(6): 787-795, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201163

RESUMO

Design: Thyroid-stimulating hormone deficiency (TSHD) is a rare disease. It may be isolated, secondary to abnormalities of genes involved in TSH biosynthesis, or associated with other pituitary deficits or abnormalities of genes involved in pituitary ontogenesis. Several genes are involved in thyrotroph development and function. Objective: Our aim was to determine the genetic causes of TSHD, either isolated (ITSHD) or associated with somatotroph deficiency (TSHD-GHD), in the cohort of patients from the GENHYPOPIT network. Methods: Next-generation sequencing (NGS) analyses were performed as a panel of genes on a cohort of patients with non-syndromic ITSHD or TSHGHD. The variants were classified according to the American College of Medical Genetics classification reviewed by the NGS-Diag network and correlated with the phenotype. Class 3, 4, and 5 single-nucleotide variants were checked by Sanger sequencing and copy number variants by multiplex ligation-dependent probe amplification (MLPA). Results: A total of 64 index cases (22 ITSHD and 42 TSHD-GHD) were included in this cohort. A genetic cause was identified in 26.5% of patients, with 36.3% in the ITSHD group (variants in TSHß and IGSF1) and 21.4% in TSHD-GHD (variants in IGSF1, TSHß, TRHR, GH1, POU1F1, and PROP1). Among the pathogenic and likely pathogenic variants identified, 42% were in IGSF1, including six not previously reported. Conclusion: Our results show that IGSF1 variants represent the most frequent aetiology of TSH deficiency. Despite a systematic NGS approach and the identification of new variants, most patients remain without a molecular diagnosis. Larger scale studies, such as exome or genome studies, should be considered in the future.


Assuntos
Hipotireoidismo , Doenças da Hipófise , Humanos , Hipotireoidismo/genética , Mutação/genética , Sequenciamento do Exoma , Tireotropina , Imunoglobulinas/genética , Proteínas de Membrana/genética
8.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137615

RESUMO

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Humanos , Variações do Número de Cópias de DNA/genética , Exoma/genética , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos Prospectivos
9.
Neurol Sci ; 43(11): 6517-6527, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35925454

RESUMO

AB variant is the rarest form of GM2 gangliosidosis, neurodegenerative diseases caused by lysosomal accumulation of GM2 gangliosides. Less than thirty cases are referenced in the literature, and to date, no late-onset form has been described. Our proband is a 22-year-old male with spinocerebellar ataxia and lower limbs motor deficiency. His symptoms started at the age of 10. A genetic analysis revealed two mutations in the GM2A gene encoding the GM2 activator protein (GM2-AP), an essential co-factor of hexosaminidase A. Both mutations, GM2A:c.79A > T:p.Lys27* and GM2A:c.415C > T:p.Pro139Ser, were inherited respectively from his father and his mother. The nonsense mutation was predicted to be likely pathogenic, but the missense mutation was of unknown significance. To establish the pathogenicity of this variant, we studied GM2 accumulation and GM2A gene expression. Electron microscopy and immunofluorescence performed on patient's fibroblasts did not reveal any lysosomal accumulation of GM2. There was also no difference in GM2A gene expression using RT-qPCR, and both mutations were found on cDNA Sanger sequencing. Measurement of plasma gangliosides by liquid-phase chromatography-tandem mass spectrometry showed an accumulation of GM2 in our patient's plasma at 83.5 nmol/L, and a GM2/GM3 ratio at 0.066 (median of negative control at 30.2 nmol/L [19.7-46.8] and 0.019 respectively). Therefore, the association of both p.Lys27* and p.Pro169Ser mutations leads to a GM2-AP functional deficiency. Whereas the first mutation is more likely to be linked with infantile form of GM2 gangliosidosis, the hypomorphic p.Pro169Ser variant may be the first associated with a late-onset form of AB variant.


Assuntos
Gangliosidoses GM2 , Humanos , Masculino , Adulto Jovem , Proteína Ativadora de G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Gangliosídeos , Gangliosidoses GM2/genética , Mutação/genética
10.
Cancers (Basel) ; 13(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199217

RESUMO

Complete deletion of the NF1 gene is identified in 5-10% of patients with neurofibromatosis type 1 (NF1). Several studies have previously described particularly severe forms of the disease in NF1 patients with deletion of the NF1 locus, but comprehensive descriptions of large cohorts are still missing to fully characterize this contiguous gene syndrome. NF1-deleted patients were enrolled and phenotypically characterized with a standardized questionnaire between 2005 and 2020 from a large French NF1 cohort. Statistical analyses for main NF1-associated symptoms were performed versus an NF1 reference population. A deletion of the NF1 gene was detected in 4% (139/3479) of molecularly confirmed NF1 index cases. The median age of the group at clinical investigations was 21 years old. A comprehensive clinical assessment showed that 93% (116/126) of NF1-deleted patients fulfilled the NIH criteria for NF1. More than half had café-au-lait spots, skinfold freckling, Lisch nodules, neurofibromas, neurological abnormalities, and cognitive impairment or learning disabilities. Comparison with previously described "classic" NF1 cohorts showed a significantly higher proportion of symptomatic spinal neurofibromas, dysmorphism, learning disabilities, malignancies, and skeletal and cardiovascular abnormalities in the NF1-deleted group. We described the largest NF1-deleted cohort to date and clarified the more severe phenotype observed in these patients.

11.
Genes (Basel) ; 10(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443423

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease with complete penetrance but high variable expressivity. NF1 is caused by loss-of-function mutations in the NF1 gene, a negative regulator of the RAS-MAPK pathway. The NF1 gene has one of the highest mutation rates in human disorders, which may explain the outbreak of independent de novo variants in the same family. Here, we report the co-occurrence of pathogenic variants in the NF1 and SPRED1 genes in six families with NF1 and Legius syndrome, using next-generation sequencing. In five of these families, we observed the co-occurrence of two independent NF1 variants. All NF1 variants were classified as pathogenic, according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) guidelines. In the sixth family, one sibling inherited a complete deletion of the NF1 gene from her mother and carried a variant of unknown significance in the SPRED1 gene. This variant was also present in her brother, who was diagnosed with Legius syndrome, a differential diagnosis of NF1. This work illustrates the complexity of molecular diagnosis in a not-so-rare genetic disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Manchas Café com Leite/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Fenótipo , Adolescente , Adulto , Manchas Café com Leite/complicações , Manchas Café com Leite/patologia , Criança , Feminino , Humanos , Masculino , Mutação , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...